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Abstract The uprising number of applications that involve very large images
with resolutions greater than 30 000×30 000 raises major memory management
issues. Firstly, the amount of data usually prevents such images from being
processed globally and therefore, designing a global image partition raises sev-
eral issues. Secondly, a multi-resolution approach is necessary since an analysis
only based on the highest resolution may miss global features revealed at lower
resolutions. This paper introduces the tiled top-down pyramidal framework
which addresses these two main constraints. Our model provides a full rep-
resentation of multi-resolution images with both geometrical and topological
relationships. The advantage of a top-down construction scheme is twofold:
the focus of attention only refines regions of interest which results in a reduc-
tion of the amount of required memory and in a refinement process that may
take into account hierarchical features from previous segmentations. Moreover,
the top-down model is combined with a decomposition in tiles to provide an
accurate memory bounding while allowing global analysis of large images.

Key words: Irregular pyramid; Topological model; Tiled data structure; Com-
binatorial map;

1 Introduction

Applicative fields involving high-resolution images raise two main issues for auto-
matic or semi-automatic image analysis. First, images are produced with a very
high resolution that usually prevents them from being processed by common mod-
els due to memory limitations. Second, the amount of details at full resolution is
likely to mask global features which only appear at lower resolutions. For example,
scanners for whole slide microscopic imaging produce multi-resolution images with
resolutions up to 32 000 × 32 000: low resolutions let appear global features such
as tissues delimitations while high resolutions allow to discern the different phases
of mitosis within cells. As a result, analyzing such images implies a hierarchical
representation with memory constraint.
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The segmentation process is the first phase of image analysis: it defines a parti-
tion of the image according to a given criterion. Usually, data structures encoding
those partitions focus either on geometrical or topological properties of partitions.
Geometrical data structures such as arrays of labels provide an efficient encoding of
both colorimetric and geometrical features of the partitions but do not provide an ef-
ficient access to topological features such as region adjacencies. On the other hand,
topological data structures such as RAG represent those topological relationships
but do not provide an efficient access to the geometrical properties of a partition.
Moreover, such data structures do not allow to discriminate fine topological rela-
tionships: for instance, they may not indicate if a region is adjacent or included into
another one. Topological maps [BDM03, DBF04] are designed to efficiently access
both geometrical and topological properties while allowing modifications of a parti-
tion through split and merge operations. Yet, they cannot apply to multi-resolution
images since they do not encode a hierarchy of partitions.

Within the hierarchical framework, quadtrees and regular pyramids [BCR90] were
the first structures used for segmentation. Both are based on psycho-visual proper-
ties but their approach is different: quadtrees use the top-down notion of focus of
attention and performs a segmentation using a recursive splitting algorithm whereas
regular pyramids adopt a bottom-up approach where each pixel of a level corresponds
to a larger set of pixels at the level below. However, both models induce major draw-
backs [BCR90]: they fail to neither encode connected regions of any size and shape
at a given level nor provide an efficient access to the neighborhood of a region. More-
over, regular pyramids do not ensure that connected regions defined at a given level
remain connected at the level below. Considering these limitations, [Mee89, MMR91]
introduced the irregular pyramid framework which overcomes the drawbacks of its
regular ancestors using a bottom-up construction scheme. Many segmentation algo-
rithms have then been designed on this framework such as [JM92, Kro95]. Finally,
in order to access both geometrical and topological information, [BK03, GSDL06]
proposed a model of irregular pyramids composed of combinatorial maps.

However, a bottom-up analysis scheme raises at least two issues when applied
to high resolution images: memory usage and relevance of extracted information.
Indeed, encoding the whole initial partition of a large image is likely to require a
large amount of memory especially if additional levels must be computed. Moreover,
extracted information is usually more relevant if the construction scheme allows to
use a region to influence the way its children (defined at a higher resolution) are
processed. For example, within the histology application field, we may choose to
refine differently the cells at full resolution depending on whether their parent region
has been identified as stroma or as a cancerous area. The top-down construction
scheme proposed by [GBD09] overcomes these two constraints. Nevertheless, the
issue of memory constraint is only partially solved since the number of regions defined
at a given level is only bounded by the size of the image encoding this level in the
pyramid.

The objective of this paper is the definition of a tiled structure for top-down

2



Romain Goffe, Luc Brun, Guillaume Damiand

irregular pyramids. We present in Section 2 the topological models used by our
structure. In Section 3, we define the framework of tiled top-down pyramids. Finally,
we present some experiments and segmentation results in Section 4 that highlight
involved memory requirements and practical applications of the model.

2 Image Representation

2.1 Interpixel Boundaries

Within the segmentation framework, an image is decomposed into a set of regions
where each region is a connected set of pixels. Representing the geometrical infor-
mation of a partition consists in encoding the shape of its regions. We use a data
structure relying on a matrix of interpixel elements ([Kov89, KKM90]) to encode
the geometry of the partition elements. Thus, from a geometrical point of view,
the partition is represented by an abstract cell complex (AC complex) composed of
pointels (or points), linels (or cracks) and pixels, referred to as k-cell, k ∈ {0, 1, 2}
(Figure 1(a)). We consider this representation as geometrical since each k-cell has
an explicit geometrical embedding. AC complexes are locally finite Alexandroff
spaces [Ale37]: every cell has a minimal finite neighborhood. Topological notions
within an AC complex such as incidence or adjacency have been defined by [Kov00]:

• the border of a k-cell is a set of (l < k)-cells defined by a bounding relation;
• two k-cells are incident if one belongs to the border of the second;
• two k-cells are adjacent if they are both incident to a same (l < k)-cell;
• the degree of a k-cell is the number of adjacent (k + 1)-cells.

Let us introduce definitions of bounding elements that compose regions bound-
aries (Figure 1(c)):

• a bounding linel separates two pixels belonging to different regions;
• a bounding pointel is incident to at least two pixels belonging to different regions;
• a bounding path is an alternated sequence of bounding pointels and bounding
linels;

Finally, regions boundaries are geometrically described as follow (Figure 1(d)):

• a segment is a maximal bounding path between two regions since it cannot be
prolongated without modifying one of the two incident regions;
• a node results from the intersection of at least three segments: a segment con-
nects two nodes.

Since a segment is a sorted sequence of bounding pointels and linels, two orien-
tations are possible: each segment defines two oriented segments.
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(a) (b) (c) (d)

Figure 1: Interpixel boundaries. (a) Notations; (b) Original image; (c) Interpixel
elements: bounding pointels and linels are filled; (d) Regions boundaries: segments
and nodes.

2.2 Combinatorial Maps

Adjacency and inclusion relationships between regions are usually referred to as the
topological description of the image since those relationships are not tied to geometri-
cal constraints. Contrary to the interpixel representation (Section 2.1), a two dimen-
sional combinatorial map (2-map) only focuses on adjacency relationships between
regions and, compared to a RAG structure, allows to represent multi-adjacencies.
A 2-map is based on two operators β1 and β2 that apply onto darts. A dart is an
abstract basic element that corresponds to an oriented segment. It is associated to
a single node, segment and region.

Definition 1 (2-dimensional combinatorial map). A two-dimensional combinatorial
map M (or 2-map) is a triplet M = (D, β1, β2) where:

1. D is a finite set of darts;
2. β1 is a permutation1 on D;
3. β2 is an involution2 on D.

Intuitively, we can consider a map as a planar graph where βi operators define
relationships between edges. In practice, the β1 permutation generates an orientation
on the border of a face, more precisely, a clockwise cyclic order on the set of edges
bounding a face. Each dart belongs to a single face and thus, to a single cycle
of β1. The β2 involution connects two darts belonging to a same edge, encoding
an adjacency relationship. For instance, in Figure 2(b), β1(1) = 2, β2(2) = 5 and
β2(5) = 2. For practical reasons, we also introduce the β0 operator defined as
β0 = β−1

1 . The notion of orbit is commonly used to traverse edges or faces: given
φ a set of permutations φ = {f1, . . . , fk}, the orbit < φ > of a dart d represents
the set of darts reachable from dart d by applying any combination of fi and f−1

i

permutations.
1A permutation is a one to one mapping from S onto S.
2An involution f is a one to one mapping from S onto S such that f = f−1.
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(a) (b) (c)

Figure 2: Combinatorial maps: a topological model for multi-adjacency relation-
ships. (a) Original image; (b) 2-Map: arrows represent darts, β1 and β2 operators
are respectively represented by arcs and segments; (c) Explicit β1 and β2 mappings.

2.3 Topological Maps

A topological map [BDM03, DBF04] combines three distinct models: a 2-map that
encodes adjacency relationships, a matrix of interpixel elements [Kov89, KKM90]
that encodes the regions’ boundaries and a tree of regions for inclusion relationships.
These three models are illustrated in Figure 3 and described below.

Minimal combinatorial map As illustrated in Figure 3(a), a 2-map encodes
topological relationships through β1 and β2 operators. The combinatorial map is
minimal in number of cells: there is not any vertex with a degree lower or equal
to 2 and therefore, the removal of any element would result in regions merging and
thus, would change the topology. For implementation purposes, darts and regions
are linked together: a dart knows the region it belongs to and a region knows a
representative dart.

Matrix of interpixel elements All the cells of a 2-map are associated to their
corresponding geometrical elements in the interpixel matrix. Associating geometrical
information to a topological element is an operation called embedding. Given a dart
d associated to a region r, a node n and a segment s:

• the orbit < β1 > (d) corresponds to a face associated to region r. This rela-
tionship is encoded by a function region from D to the set regions labels such
that region(d) = r;
• the orbit< β1◦β2 > (d) corresponds to a vertex associated to node n. Since each
node correponds to a pointel, we encode this correspondence using a function
pointel from D to the set of nodes labels such that pointel(d) = n;
• the orbit < β2 > (d) corresponds to an edge associated to the unoriented
segment s, each dart of < β2 > encoding one orientation along s (for instance,
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(a) (b) (c)

(d)

Figure 3: Topological map: three complementary models for partition encoding.
(a) Combinatorial map for adjacency relationships. Dashed arrow denotes the dart
of the infinite region; (b) Interpixel matrix for geometrical encoding: pointels and
linels are represented by bold circles and segments; (c) Tree of regions for inclusion
relationships; (d) Connection between the objects defined within the three models
composing a topological map.

< β2 > (2) = (2, 5) in Figure 2(b)). Thus, we associate each dart to an oriented
segment whose first linel is denoted by linel(d).

For instance, in Figure 3(b), the embedding of dart 1 is the oriented segment repre-
sented by the sequence (p1, l1, l2, l3); linel(1) = l1, pointel(1) = p1; degree(p1) =
degree(p2) = 3. Figure 3(d), summarizes associations between interpixel and topo-
logical representations.

Tree of regions The tree of regions describes inclusion relationships: a region is
the father of the regions it contains. In Figure 3(c), r1 contains r2, r3 and r4, r2 and
r3 are adjacent. The root of the tree encodes the background of the image and is
called the infinite region (noted r∞).

2.4 Top-down Pyramids

In order to fit the hierarchical framework, the topological map model has been ex-
tended to top-down pyramids [GDB09] and we recall in this section the main notions
and operations of the model. Each level of such a pyramid is deduced from the pre-
vious one by splitting operations. The resulting sequence of partitions defines thus
a causal structure [GCM06] which induces hierarchical relationships between levels:
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(a) (b) (c)

Figure 4: Representation of a top-down pyramid composed of two levels Gk and
Gk+1. (a) Pyramid: β1 and β2 operators are represented by arcs and segments.
Arrows between the levels show up/down relationships between darts and regions.
Level Gk is composed of a single region r1. The splitting operation on Gk+1 allows
to differentiate the two regions r2 and r3; (b) up/down relationships between darts;
(c) up/down relationships between regions.

each level Gk of a top-down pyramid is encoded by a topological map where each
dart and each region is connected to its parent in Gk−1 and one of its children in
Gk+1. These links are called up/down relationships.

Contrary to bottom-up methods, based on an explicit encoding of the base of
the pyramid, a top-down approach starts the segmentation process with a rough
partition which is refined at further levels. This construction scheme results in a
major memory reduction since many regions may be encoded only at the top level of
the pyramid. Moreover, a top-down construction scheme allows to take advantage
of the focus of attention over interesting regions: the segmentation of a region can
be adapted according to the features of its parent.

During the construction of the pyramid, the refinement of a level is the main
operation. In our model, it is performed in three steps. First, the level is duplicated
and the up/down relationships are set (Figure 5(a)). Second, a splitting criterion
selects the regions to refine in the next level. Those regions are decomposed into
a set of basic regions, each region enclosing a single pixel (Figure 5(b)). Third, a
merging process merges those basic regions according to a merging criterion. Since
any couple of adjacent regions may be merged, this refinement step may encode any
subdivision of the parent region (Figure 5(c)).

The different levels of a top-down pyramid encode a sequence of nested partitions,
each level encoding additional details of the previous partition. This last notion is
different from the notions of resolution used within the regular pyramid framework.
For instance, a single image with a fixed resolution may be used within a top-
down pyramid which will then encode different levels of details of a same image.
An alternative solution consists in combining a top-down and a regular bottom-up
pyramid. In this case, each level of a top-down pyramid encodes a partition of the
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(a) (b) (c)

Figure 5: Refinement of the regions that compose a level of a top-down pyramid.
(a) Level duplication and up/down relationships between darts and regions; (b) De-
composition of selected regions into basic regions enclosing a single pixel; (c) Merge
regions according to criterion result.

initial image at a given resolution. The causality of the resulting hierarchy is induced
by the construction scheme of a top-down pyramid. As a result, top-down pyramids
can be constructed either from single or multi-resolution images.

3 Definition of a Tiled Top-down Pyramidal Model

3.1 Topological Tiles

The main drawback of the top-down pyramidal model is that the global amount
of required memory is bounded below by the size of the larger partition processed
within the pyramid: for each level, the whole topological map (which encodes the
partition defined at this level) must be loaded. In the worst case, each region of the
topological map encoding the base level partition may correspond to a single pixel
hereby leading to an explicit encoding of the finest partition of the initial image.
Even if a top-down scheme usually supplies a major memory reduction compared to
a bottom-up scheme, there is no accurate control over memory usage: a solution to
this issue is to divide the topological map that represents a level into topological tiles.
Intuitively, a tile represents a regular and arbitrary subdivision of a level that can be
recovered from the juxtaposition of all the tiles it has been split into. The interesting
point in dividing the levels of the pyramid in tiles is that most of processings only
require a few tiles at the same time: unused tiles can be stored apart by swapping
them on disk so that a maximum of memory space is available for the tiles being
processed. A simple solution to record a tile is to apply a unique label for each dart
and region that identifies them in a file.

Several strategies can be considered for the subdivision in tiles. A first approach
would consist in defining a tile as a set of regions. However, such a solution looses
the main advantage of memory bounding (a region may contain the whole image).
A second approach is to keep a constant number of rectangular tiles per level. This
strategy leads to single up/down relationships (one tile has exactly one parent and
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(a) (b) (c) (d)

Figure 6: Topological tile. (a) An image divided into 4 tiles; (b) Geometrical rep-
resentation; (c) Topological representation. β′2 operator is represented by bold seg-
ments; (d) Detail of the connection between t(0, 0) and t(0, 1). Darts 2 and 3 belong
to the infinite region. β2(1) = 2, β2(4) = 3, β′2(1) = 4.

one child) but the size of a tile in Gk depends on both the size of a tile in G0 and
the scale factor between the resolutions associated to Gk and G0: in the case of a
hierarchical image with important changes of resolution, the size of a tile on high-
resolution images is likely to exceed the available memory. A third approach uses a
constant size of tiles: it offers an accurate control of the memory requirements since
the amount of memory required by a tile is bounded by the size of the topological
map encoding the finest partition on the tile. This last quantity is proportional to
the size of the tile which is user-defined. We have thus preferred this solution for
our model.

We define a topological tile as a rectangular area encoded by a local topological
map composed of a combinatorial map, a geometrical matrix encoding interpixel
elements and a tree of regions. Geometrically, two adjacent tiles have the same
embedding along their shared border (Figure 6(b)). Topologically, each tile is a closed
topological map (Figure 6(c)). We introduce a β′2 operator on the darts that belong
to the border of a tile to ensure its connection with adjacent tiles (Figure 6(d)). The
procedure ConnectTileBorders details the whole operation and is described below.

ConnectTileBorders We call basic dart a dart d whose edge embedding is a single
linel. Let s (resp. s′) be the set of darts that are adjacent to t′ (resp. t) and that
belong to the infinite region of t (resp. t′). First, we split s and s′ into basic darts
(line 1 of Algorithm 1). This splitting operation ensures that s and s′ share the same
number of darts (Figure 7(a)). Second, we link t and t′ thanks to the β′2 operator
(line 2) by traversing simultaneously the darts of s and s′. This step is illustrated
by Figure 7(b). Finally, since the previous steps may have created degree 2 vertices,
we perform a simplification pass in order to maintain the minimal property of our
model (line 3 and line 4). The idea is to process each vertex that belongs to the
shared border (s, s′) of two adjacent tiles t and t′, and to remove it according to the
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(a) (b) (c)

Figure 7: Connection of borders between two tiles. (a) Splitting of the border into
basic darts; (b) β′2 connection: d and d′ are two basic darts that belong to r∞ and
p = pointel(d) = pointel(β2(d′)). Connecting t and t′ comes to link β2(d) with β2(d′)
such as β′2(β2(d)) = β2(d′); (c) Simplification step: degree(p1) equals 2 in t but 3 in
t′ whereas degree(p2) equals 2 in both t and t′: the vertex removal operation is only
performed on pointel p2.

method in [DL03]3 if its embedding is a pointel whose degree is equal to 2 in both
t and t′ (Figure 7(c)). Indeed, the notion of minimality of the combinatorial map,
presented in Section 2.3 may not be locally preserved along the tiles’ borders: for
example, in Figure 7(c), the tile t is not a minimal combinatorial map due to pointel
p1 whose degree is equal to 2.

3.2 Tiled Topological Maps

The connection of a set of tiles encodes a partition as a global structure called
a tiled topological map. However, the geometrical subdivision entails two main
consequences:

• the borders of the tiles should be considered as fictive if according to a given
merging criterion, pixels on both sides of a tile’s border belong to a same region
(Figure 8(a));
• edges and regions may be split and shared by several tiles (Figure 8(b)).

Therefore, we detail below the DetectFictiveBorders procedure which allows to
differentiate fictive borders from real ones. Moreover, we define the permutation δ1
and the involution δ2 in a tiled topological map in order to traverse edges and regions
in the same way β1 and β2 allow to traverse a topological map.

DetectFictiveBorders In order to specify whether or not an edge should be con-
sidered as fictive, we use a mark on the linels of the tiles borders. All the linels

3The vertex removal operation on a dart d ensures that β1(β0(d)) ← β1(d) and
β1(β0(β2(β1(d))))← β2(d). Then, it deletes d and β1(β2(d)).
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Algorithm 1: ConnectTileBorders
Data: Two adjacent tiles t and t′;
Result: t and t′ connected.
Let s the set of darts adjacent to t′ and that belong to the infinite region of t;
Let s′ the set of darts adjacent to t and that belong to the infinite region of t′;
Split s and s′ into basic darts;1
while ∃ dart d ∈ s|d is unmarked do

p← pointel(d);
Let d′ the dart of s′ such as pointel(β2(d′)) = p;
p′ ← pointel(β2(d′);
β′2(β2(d))← β2(d′);2
if degree(p) = degree(p′) = 2 then

vertexRemoval(d);3
vertexRemoval(d′);4

else
Mark(d);

encoding tiles’ geometrical borders are marked as real during the construction of a
tiled level (Algorithm 6). Then, the merging criterion is applied on all the couples of
regions separated by a tile’s border (line 2 of Algorithm 2): if both regions should be
merged, we mark the embedding of their shared border as fictive (line 3 and line 4).
Note that the merging criterion must implicitly define a partition to ensure that
no dangling edges are produced. For example, a quantization is a suitable crite-
rion whereas a criterion based on the difference of average gray levels of the regions
compared to a defined threshold is not.

A dart d is said to have a real embedding if its associated oriented segment
encodes a non fictive border, the dart is called fictive otherwise. Using the oper-

(a) (b)

Figure 8: Consequences of the subdivision in tiles. (a) Fictive linels on the tiles
borders. Darts 1 and 4 have a real embedding whereas darts 2,3,5 and 6 have a
fictive one; (b) Edges and regions may be split and shared between several tiles.
Dashed arrows denote the darts of the infinite region.
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ation DetectFictiveBorders, all the linels of a segment associated to a fictive dart
are marked as fictive and conversely, if all linels of a segment are fictive, the cor-
responding dart is fictive by definition. Therefore, the fictive property of a dart
may be efficiently checked by testing the mark of one of its linels such as linel(d)
(Section 2.3).

Algorithm 2: DetectFictiveBorders
Data: Two adjacent tiles t and t′.
Result: Fictive borders of t detected.
Let s be the set of darts adjacent to t′ and belonging to the infinite region of t;
Let s′ be the set of darts adjacent to t and belonging to the infinite region of
t′;
while ∃d ∈ s | d is not marked do

Let d′ the dart of s′ such as β2(d′) = β′2(β2(d));
r ← region(β2(d));
r′ ← region(β2(d′));
if merging_criterion(r, r′) is true then1

Mark embedding(β2(d)) as fictive;2
Mark embedding(β2(d′)) as fictive;3

Mark d;

δ2 involution The δ2 operator indicates the opposite face independently of whether
it belongs to another tile or not. Thus, given a dart d, δ2(d) = β′2(d) if β′2(d) is defined
(i.e d belongs to a border shared by two adjacent tiles). Otherwise, δ2(d) = β2(d).
As a result, we introduce the δ2 operator as follows:

Proposition 1 (δ2 involution). Let T be a set of connected topological tiles T =
{t(i, j)}(i,j)∈{0,...,W}×{0,...,H}. Let D be the set of darts of T with a real embedding.
δ2 is an involution on D such as:

∀d ∈ D; δ2(d) =
{
β′2(d) if β′2(d) exists
β2(d) otherwise

Proof. If δ2(d) = β′2(d), β′22 (d) exists and is equal to d by definition of β′2. Similarly,
if δ2(d) = β2(d), β2(d) and d have a real embedding and δ2(β2(d)) = β2

2(d) = d.

δ1 permutation The operator δ1 allows to traverse an edge that may be shared
by several tiles. For example, in Figure 8(b), starting from dart 1, iterations of δ1
operator should lead to the successive traversal of the darts 4, 5, 6 and 7. The idea
is the following: given a dart d, let us consider that δ1(d) = β1(d) as long as β1(d)
does not have a fictive embedding. In this last case, δ1(d) belongs to an adjacent tile
so we skip fictive darts with the operation β′2 ◦ β1 until δ1(d) has a real embedding.
This procedure leads to the following proposition:

12
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(a) k = 0 (b) k = 1 (c) k = 2

Figure 9: The three different cases that define the δ1 permutation. Each square
belongs to a different tile. Dashed arrows denote the darts of the infinite region.

Proposition 2 (δ1 permutation). Let T be a set of connected topological tiles T =
{t(i, j)}(i,j)∈{0,...,W}×{0,...,H}. Let D be the set of darts of T with a real embedding.
δ1 is a permutation on D such as:

∀d ∈ D; δ1(d) = β1((β′2 ◦ β1)n(d)) with n = min{p ∈ N | linel(β1((β′2 ◦ β1)p(d)) is
real}

Proof. Since δ1 applies from D onto D, the injection property implies that δ1 is a
permutation on D. Let us consider d and d′ such as δ1(d) = δ1(d′). Then, (β′2 ◦
β1)n(d) = (β′2 ◦ β1)m(d). If n = m, then d = d′ since β′2 ◦ β1 is a permutation.
Otherwise, let us suppose that n > m. Then, (β′2 ◦β1)n−m(d) = d′ which contradicts
the definition of n. Thus, δ1 is a permutation on D.

Note that using a 4-connected pixel grid, n cannot exceed 3. The three cases
n = 0, n = 1, and n = 2 are illustrated in Figure 9.

The previous definitions of δ1 and δ2 operators allow to extend the definition of
combinatorial maps to tiled combinatorial maps as follows:

Definition 2 (Tiled combinatorial map). Let T be a set of connected topological
tiles T = {t(i, j)}(i,j)∈{0,...,W}×{0,...,H}. Let D be the set of darts of T with a real
embedding. A tiled combinatorial map M is a triplet M = (D, δ1, δ2) where:

(1) δ1 is a permutation on D which follows proposition 2;
(2) δ2 is an involution on D which follows proposition 1;

3.3 Tiled Top-down Pyramids

The pyramid defines a hierarchy by introducing up/down relationships between topo-
logical tiles, darts and regions. Except for the tiles of top and bottom levels of the
pyramid that do not have respectively any parent and any child, each tile knows its
single parent (tile up) and one of its child (tile down). Several tiles of a same level
may have a same parent: since all the children of a given tile are adjacent, we can
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efficiently retrieve the children of a tile starting from the tile down and finding all
its neighbors with the same tile up. We define a tiled top-down topological pyramid
as a stack of tiled topological maps. The pyramid defines a three coordinates sys-
tem of representation for a set of topological tiles denoted by t(i, j, k) where (i, j, k)
indicates the coordinates (i, j) of the tile t at level k. Moreover, the pyramid may
swap or load tiles between memory and disk and spread modifications to ensure the
coherence of the model. For example, if a splitting operation modifies the border
of a tile, the pyramid may update the adjacent tiles that are either on disk or in
memory.
Definition 3 (Tiled top-down topological pyramid). A tiled top-down pyramid P
composed of l + 1 tiled topological maps is defined by:

P = {t(i, j, k)}k∈{0,...,l},(i,j)∈{0,...,Wk}×{0,...,Hk} where t(i, j, k) is a topological tile
and ∀k, 0 ≤ k ≤ l:

(1) WkHk and (i, j) ∈ {0, . . . ,Wk}× {0, . . . ,Hk} encode respectively the number of
tiles and the coordinates of one tile at level k.

(2) t(i, j, k) is a topological tile encoding a partition of the geometrical tile (i, j)
defined at level k;

(3) t(i, j, k + 1), k < l is deduced from t(i, j, k) by performing splitting operations.

Note that, in addition to definition 5, a tiled top-down pyramid may alterna-
tively be denoted by P = {Gk}k∈{0,...,n} where Gk+1 is a tiled combinatorial map
(definition 2) deduced from Gk by splitting operations. The hierarchy in a top-down
pyramid is implicitly induced by up/down relationships. However, those relation-
ships do not grant an immediate solution to retrieve edges and regions from one
level to another. Indeed, the down relationship only provides a representative ele-
ment of the connected set that represents a given object (edge or region) in a higher
level. The issue consists in retrieving the correct neighbors of this representative and
is detailed by two procedures EdgeChildrenRetrieval and RegionChildrenRetrieval re-
spectively for edges and regions between two levels Gk and Gk+1. Both procedures
are illustrated by Figure 10.

EdgeChildrenRetrieval Algorithm 3 allows to retrieve an oriented segment de-
fined at level Gk in Gk+1. Due to the decomposition of the image partition into
a set of tiles, such a segment is encoded in Gk by a sequence of darts di such as
di = δ1(di−1). The algorithm retrieves the set of darts they have been split into in
Gk+1. For each di, we retrieve its children in Gk+1. For this purpose, down(d) is
a first representative of d in Gk+1 (line 1 of Algorithm 3). While traversing the set
of darts incident to δ1(d), the dart up relationship indicates whether a dart corre-
sponds to di (line 2). In the example illustrated by Figure 10.a, edge e = (1, 2) may
be retrieved considering the children of either dart 1 or dart 2. Let us consider dart
1. Darts 3 and 5 that correspond to 1 in Gk+1 are respectively retrieved as down(1)
and as the first dart d of the orbit < δ1 ◦ δ2 > (δ1(3) = 4) verifying up(d) = 1. As a
result, e = (1, 2) corresponds to the edges (3, δ2(3) = 7) and (5, δ2(5) = 8).
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(a) (b)

Figure 10: Children retrieval operations for edges and regions in a tiled top-down
pyramid. (a) Edge (1,2) corresponds to the edges (3,7) and (5,8); (b) Region r1
corresponds to r3, r4 and r5.

RegionChildrenRetrieval Retrieving the children of a region r defined in Gk

can be decomposed in three main steps. First, down(r) provides a representative of
r in Gk+1 (line 1 of Algorithm 4). Second, neighboring regions are traversed using
the orbit < δ1, δ2 > (line 2). Third, the region up relationship indicates the regions
that correspond to r (line 3). Finally, we call IncludedRegionsRetrieval (line 4) to
add their included regions as long as their up is r (detailed below). In Figure 10.b,
the children of r1 in Gk+1 are r3, r4 and r5. The procedure retrieves r3 as down(r1),
r4 as a neighbor verifying up(r4) = r1 and r5 as an included region of r3. Note that
r6 is ignored although it is an included region of r5 since up(r6) = r2 6= r1.

IncludedRegionsRetrieval This procedure, described in Algorithm 5, is called
from Algorithm 4 on line 4. It uses the tree of regions in the topological map model
to retrieve the children of a region R included in a region r such as up(r) = R (line 1
of Algorithm 5). Then, the procedure selects among them the regions whose up is
R (line 2).

3.4 Construction Scheme

The construction scheme of a tiled pyramid is described below by the procedure
TiledExtraction. It relies on the ConnectTileBorders operation described in Sec-
tion 3.1. The operation is an incremental algorithm which only requires four tiles
to be loaded into memory. For simplification purposes, given a tile t = t(i, j, k),
left(t), top(t), right(t), bottom(t), up(t) respectively denote t(i−1, j, k), t(i, j−1, k),
t(i+ 1, j, k), t(i, j + 1, k) and t(i, j, k − 1) as long as they are defined.

TiledExtraction The global construction scheme of a tiled top-down pyramid
starts by recording all the tiles of the initial map G0 on disk (line 1 of Algorithm 6).
The extraction scheme traverses tiles line by line from the top-left to the bottom-
right subdivision. In order to create a tile t (initially a copy of up(t)), three other
tiles must be loaded into memory: up(t) since t is its refinement, left(t) and top(t)
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Algorithm 3: EdgeChildrenRetrieval
Data: d: first dart of an edge e in Gk.
Result: s: sequence of darts that represents e in Gk+1.
foreach dart d′ ∈ e do

end← false;
cur ← down(d′);1
Add cur on top of s;
while end is false do

prev ← cur;
cur ← δ1(cur);
while end is false and up(cur) 6= d′ do2
cur ← δ1(δ2(cur));
if δ2(cur) = prev then

end← true;

if cur = down(d′) then
end← true;

if end is false then
Add cur at the end of s;

Return s;

Algorithm 4: RegionChildrenRetrieval.
Data: rk: a region of Gk .
Result: res: list of regions that compose rk in Gk+1.
first← down(representative(rk));1
foreach dart d ∈< δ1, δ2 > (first) do2
r ← region(d);
if r is not marked and up(r) = rk then3

Add r at the end of res;
Mark r;
res← res ∪ IncludedRegionsRetrieval(r, rk);4

Return res;
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Algorithm 5: IncludedRegionsRetrieval
Data: Let r be a region of a level Gk+1.

Let R be a region of a level Gk.
Result: res: regions included in r and whose up is R.
foreach region r′ ∈ r do1

if r′ is not marked and up(r′) = R then
Add r′ at the end of res;2
Mark r′;
res← res ∪ IncludedRegionsRetrieval(r′, R);

Return res;

in order to connect the left and top borders of t (line 2). The right and bottom
borders of t are connected at a latter stage when respectively processing right(t)
and bottom(t). Note that if left(t) or top(t) are not defined, (i = 0 or j = 0),
t belongs to the border of the image and does not need to be connected with its
neighbors. Next is the refinement step: t is initially a copy of up(t) which is refined
using a split and merge technique preserving the causality of the pyramid [GBD09]
(line 3). The ConnectTileBorders operation ensures a coherent topology with left
and top neighbors (line 4). Finally, before processing the next tile t in Gk, we save
modified tiles (line 5) and free memory so that the number of tiles loaded into memory
remains bounded (line 6).

Algorithm 6: TiledExtraction
Data: An image I.
Result: A tiled top-down pyramid P composed of m+ 1 levels.
Associate I to P ;
foreach tile t ∈ G0 do

Save t;1

for k = 0 to m− 1 do
foreach tile t(i, j, k) ∈ Gk do

t← t(i, j, k + 1);
Load left(t) and top(t);2
Copy and refine t from up(t);3
Connection with adjacent tiles by calling4
ConnectT ileBorders(t, left(t)) and ConnectT ileBorders(t, top(t));
Save t, left(t), top(t) and up(t);5
Unload left(t), top(t) and up(t);6
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Table 1: Memory and time comparison between non-tiled and tiled top-down mod-
els for different scalings of image Lena with a basic segmentation criterion based
on average gray values of the regions with user-defined thresholds of 30/20/10 for
G1/G2/G3.

top-down model tiled top-down model
img side extract ram extract ram disc
(pixels) runtime (MB) runtime (MB) (MB)

512 4s 92 4s 92 3
1 024 11s 366 8s 95 7
2 048 40s 1 412 28s 92 19
4 096 na na 2mn 94 69
8 192 na na 7mn 95 272

4 Experiments and Application

This section has two main objectives: demonstrate the memory feasibility of the
extraction of a combinatorial pyramid from large images and present first segmen-
tation results obtained on histological images. We also provide runtime4 for the
construction of tiled top-down pyramids from different images.

Tiled top-down model Table 1 emphasizes the advantage of using a tiled top-
down model: while a plain top-down extraction cannot handle 4 levels of 4 096 ×
4 096 due to memory limitations, the tiled approach can process any large image
with an almost constant amount of memory. As shown by the fourth column of
Table 1, the extraction process is linear with the size of the image as we traverse
all pixels to get colorimetric information for the regions. The maximum size of a
tile is obtained when each pixel corresponds to a different region. In this case, the
size of the combinatorial maps can be estimated as: 4 × sizeof(dart) × ]pixels +
sizeof(region) × ]pixels. Our implementation results in sizeof(dart) = 60 bytes
and sizeof(region) = 80 bytes. Experiments show similar values since the splitting
method decomposes regions and produces one region per pixel before the merging
step. Note that the required amount of available memory may be more important
since the matrix of interpixel elements and the image5 must be loaded too. In
Table 2, we provide runtime and memory usage for an extraction from different
multi-resolution images. We can notice that the subdivision in tiles allows to bound
memory requirements of the segmentation step.

4The model is implemented in C++ and computations are carried out on an Intel E5300@2GHz
with 2GB RAM.

5We use the tiles of the bigtiff library available at http://www.aperio.com/bigtiff to load only
the subdivisions that are necessary to the topological tiles being processed.
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Table 2: Runtime and memory usage for the extraction of tiled top-down pyramids
from the images Histology and Lena scaled at different resolutions. The pyramids
are composed of three levels, each one encoding a different resolution.

image resolutions tile extract ram disc
(pixels) side runtime (MB) (MB)

Lena 128/256/512 128 1.9s 95 2
Lena 512/1 024/2 048 128 20.6s 101 11
Lena 2 048/4 096/8 192 128 5mn20s 126 157
Lena 8 192/16 384/32 768 128 1h48mn 119 2 491
Hist. 625/2 500/10 000 400 44mn 86 274

(a) (b)

Figure 11: Extraction of a tiled top-down pyramid from a multi-resolution histolog-
ical image. (a) Partial representation of the original resolution; (b) Partitions.

Segmentation results Figure 11 illustrates the tiled construction of the pyramid
associated to the image Histology (Figure 11-a) from the last row of Table 2. The
two columns in Figure 11(b) represent a same small area of the whole image at the
resolutions 625×625, 2 500×2 500 and 10 000×10 000. The first and second columns
respectively represent segmentation results obtained respectively with a gradient
threshold [GDB09] and a quantization algorithm [KMN+02]. For each of these seg-
mentation algorithms, one may note the progressive refinement of the initial partition
which corresponds to additional information provided by higher resolutions.

5 Discussion

In this paper, we have introduced the framework of tiled top-down pyramids as
an extension of the model of topological map. Our model handles the hierarchical
segmentation of large multi-resolution images. Indeed, it has been designed with the
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two following constraints: memory bounding and adaptive segmentation from global
features present at low resolutions to finer details at high resolutions.

Our solution for memory bounding results in the decomposition of our model in
a set of smaller structures, called topological tiles. Each resolution of the image is
encoded by a set of connected tiles which form a tiled topological map. We have
defined two new operators on those tiled levels to extend the operations defined
for topological maps. These operators allow to abstract the artificial decomposition
induced by the geometry of the tiles. Then, the pyramid defines a hierarchy between
the topological tiles to encode the hierarchy induced by multi-resolution images. We
also provide the main operations induced by this hierarchy.

In order to perform an adaptive segmentation of multi-resolution images, we have
proposed a top-down construction scheme: each tile is deduced from its parent after
splitting operations. The proposed algorithm is incremental and requires a maximum
of four tiles in memory.

Finally, our experiments have confirmed that the memory bounding is sufficient
to process large multi-resolution images such as histological images in whole slide
imaging.

In our future work, we plan to improve the performance of the model with dif-
ferent splitting techniques and develop the segmentation aspect with new criteria
specific to applications in histology.
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